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Abstract 

The general pattern recognition problem always involves the extraction of features to be 

used in pattern classification. There are no theoretical limitations to the number of features 

which can be obtained for a given pattern recognition problem. There are however, many 

practical concerns which compel the researcher to reduce the feature space dimensionality 

to a set of most salient features. This process, called dimensionality reduction, has been a 

thoroughly researched area of pattern recognition. This thesis has a three-fold contribution. 

First, a comparison will be made between Ruck's saliency as proposed in previous works and 

a new variant of Ruck's saliency to be introduced. The results of the new method will prove 

to be superior. Classification accuracy is improved by over 7 percentage points. Secondly, 

a proposal will be presented which establishes how one may use the eigenvalue/eigenvector 

pairs from DBFA [22] for feature saliency. This proposal will also provide proof of the 

equivalence of DBFA and the Ruck variant proposed in this thesis. Because the Ruck variant 

is easier to calculate, it is suggested that DBFA is unnecessary. Finally, this thesis will 

investigate the application of classifier-free feature screening of a large feature space. A 

correlation-based procedure will be developed which has proven to outperform other saliency 

metrics such as the Fisher ratio and derivative-based techniques such as Ruck's saliency. This 

procedure has produced classification accuracies 10 percentage points higher than that of 

Fisher saliency while achieving a slightly better (2 percentage points) classification accuracy 

than the best derivative-based results. In addition, a combined process will be implemented 

which is superior to any stand alone technique. Classification results from the combined 

technique are 10 percentage points higher than the best results from any of the other methods. 

The applicability of the proposed technique is limited in this research to two-class pattern 

recognition problems, but may be extended to multi-class problems. 

IX 



Decision Boundary Analysis Feature Selection 

for Breast Cancer Diagnosis 

/.   Introduction 

The National Cancer Institute (NCI) estimated that in 1994 182,000 women were newly 

diagnosed with breast cancer with over 46,000 deaths per year [25]. Assuming a longevity of 

79 years, the lifetime risk that a woman will develop breast cancer is 1 in 8. Breast cancer 

is the second leading cause of cancer death among women and accounts for 4 percent of all 

deaths of women in North America each year. 

Early breast cancer diagnosis and detection continues to be a focus of researchers 

around the world. Early detection is vital for patient survivability. Although screen/film 

mammography has been used for many years and is currently the best method for breast 

cancer screening, 10 percent of breast cancers do not show up on these X-rays [25]. The 

most sobering statistic concerning breast cancer diagnosis is that 10 to 30 percent of negative 

diagnoses are later determined to be cancerous [25]. In two thirds of these false negatives, 

the malignant region was evident upon reexamination of the mammogram [16]. 

1.1    Background 

There are three major areas in which researchers have focused in order to improve 

the breast cancer diagnosis process. One research focus is the area of image acquisition. 

Ultrasound and Infra-red techniques exist but X-ray mammography is currently the most 

common means of imaging for breast cancer screening. The limitations of this are numer- 

ous. As stated before, 10 percent of all breast cancers will not be evident in an X-ray. The 

reason is that there are very subtle differences between normal and cancerous breast tissue. 

X-ray mammography may not be able to sufficiently contrast these regions.  In particular, 
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denser breast tissue in younger patients obscures abnormal tissue. These image acquisition 

limitations are being addressed by such groups as MedDetect, Fischer Imaging, Nova R&D 

and ThermoTrex Corp. [30]. Most of this activity utilizes imaging technology reaped from 

military research in the area of target recognition. 

The second major focus deals not with imaging but rather image processing [9, 18, 

4, 10]. Historically there has been little image processing in the field. Typically, radiolo- 

gists simply view the film mammograms as given. More recently, the plethora of military 

image processing techniques have been applied to breast cancer screening [26, 6]. It is now 

commonplace for clinicians to digitize X-ray films. This usually provides some contrast en- 

hancement but more importantly it allows the researcher to extract information from the 

image using a computer. This information may not be readily apparent to the unaided eye 

of the radiologist. Extracting information from an image is commonly referred to as feature 

extraction. There can be hundreds of features in an image, not necessarily visible, which 

may indicate abnormality of tissue. Although this is an enormous area of research, there is 

currently no implementation in the field of computer aided diagnosis. 

The final area of intense research is in actual diagnosis [5, 28, 12]. Researchers feel 

strongly that given relevant features from image processing techniques, they can correctly 

classify regions of interest in a breast image as malignant or benign. The key is to find 

relevant features. As was stated previously, in any pattern recognition problem it is always 

possible to extract nearly countless features from the pattern image. Examples could be 

Fourier coefficients, biorthogonal wavelet coefficients, contrast measures, entropy, angular 

second moment and eigenmass [5, 10]. Many of these features are ad hoc metrics that we 

somehow feel may be important in determining if a given region is malignant or benign. 

Most researchers would agree that if cancer is in the image, we should be able to find it. 

The problem is simply that we don't know what indicates cancerous tissue. Typically then, 

many, sometimes hundreds of features are extracted in hopes of finding the salient or most 

important ones for classification. Unfortunately, when classifying data, the computational 

costs are huge if the number of features is large [31].   In addition, there is a theoretical 
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limit in the number of features a classifier can use based on the number of training samples 

available [14]. Due to the theoretical and computational limitations [1], it is almost always 

necessary to reduce the beginning feature set to some subset of the most salient features. 

Current research at the Air Force Institute of Technology involves all three of the afore- 

mentioned interest areas. Many researchers over the years have contributed to the pool of 

features which can be extracted from a digitized mammogram. The current feature count is 

170. In previous research thrusts, feature saliency techniques have been applied to smaller 

sets of features [5]. In each of these contributions, the most salient features from each of 

these subsets were identified. To date, no one has identified the most salient features from 

the entire set. The reason is that most saliency metrics require a non-parametric classifier 

such as an MLP. To train an MLP using 170 features, would require a huge database of 

training exemplars to avoid violation of Foley's rule [14]. The computations would also be 

very time consuming. 

1.2 Problem Statement 

This research will develop a correlation procedure for screening a large feature set 

without the use of a trained classifier. The results will be compared to established saliency 

metrics such as the Fisher ratio and derivative-based techniques such as Ruck's saliency. 

1.3 Scope 

This research will develop a procedure for screening a large feature set without the use 

of a trained classifier. In addition, a variant of the Ruck saliency metric will be introduced. 

Theoretical comparisons will be made between the results of this research and those of 

classifier-based feature saliency metrics such as Ruck's saliency at the data points [34]. 

1.4 Overview 

With the motivation and the problem having been stated here in Chapter I, Chapter II 

will present related research and background information. Chapter III will discuss the specific 
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methodology used in development of a classifier free screening technique. Data description 

and analysis will be discussed in Chapter IV. Conclusions and research suggestions will be 

presented in Chapter V. 
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II.   Theory 

2.1    Pattern Recognition 

Pattern Recognition can be mathematically defined as a mapping from Rn —> Rm, 

m<n. To be more specific, in pattern recognition we are typically concerned with assigning 

a vector in Rn to one of m classes. As an example, consider a vector of human attributes 

such as age, body fat, blood pressure, shoe size, hair length and skin color. This produces 

a 6-dimensional vector for each human. In pattern recognition, these attributes are called 

features and the vector is called the feature vector. Now, given a feature vector for any ran- 

domly chosen individual, we wish to classify that person as male or female based solely on 

the feature vector. This is the essence of pattern recognition. The complete pattern recog- 

nition problem involves three steps and is illustrated in Figure 2.1. The first step involves 

Image Segmentor 
Feature 

Extractor 
Classifier 

i j 

Class 

Label 

Region of Interest (ROI) Feature vector 

Figure 2.1    The pattern recognition process 

the segmentation of the measurement space. For example, given a satellite photo covering 

an area of enemy occupation, the segmentation procedure will determine which regions of 

interest (ROFs) of the photo may contain possible targets. This is accomplished using some 

computer aided filtering scheme. Given these ROI's, the next step extracts certain attributes 

or features from the region. Here, the features could be coefficients from a Fourier transform 

or any of countless other features. The features are assumed to be useful in determining 

the target characteristics. In the final step, a vector of extracted features for a given ROI is 

used to classify the suspect region into one of a number of target classes. The classification 
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success is highly dependent on the saliency of the chosen features. 

Returning to the gender example, it is instructive to note the correlation between age 

and shoesize. Certainly, age or shoesize alone have no discriminatory power with regard to 

gender, but together they provide useful information. Also notice that skin color probably 

has no bearing on gender status. This is a simple instructive example which was intuitively 

easy to analyze. Unfortunately, in real world applications, the features may have extensive 

multi-collinearities and many may be useless in the discrimination task. In this case, they are 

never as easy to identify as in this example. The identification of these correlated features 

and useless features is one of the most important problems in pattern recognition and is the 

focus of this entire thesis. 

The Air Force Institute of Technology has studied many pattern recognition prob- 

lems [39, 5]. Traditionally, AFIT in conjunction with Wright Laboratories, has been con- 

cerned with the target recognition problem. Much work has been done at AFIT over the last 

30 years regarding this particular pattern recognition problem. More recently, researchers at 

AFIT have formed a breast cancer research group with the goal of applying decades of target 

recognition technology to the related problem of breast cancer detection and diagnosis. 

As previously discussed, one of the most important problems in pattern recognition is 

feature selection. It has been said many times before that good features make good classi- 

fiers. In any classification problem, it is almost certain that some features are more useful 

in discriminating between classes than others. These features which hold more information 

relative to the discrimination task are often termed salient features. As such, in any classi- 

fication problem one seeks to find the most salient features from a given feature set. 

Pattern recognition problems begin with the extraction of a large number of features 

from the measurement space. For example, the breast cancer research group at the Air Force 

Institute of Technology has developed 170 features which are routinely extracted from newly 

digitized mammograms. Although this is a large number, there is no reason researchers 

couldn't increase this number indefinitely as long as they felt the addition of a new feature 

may prove relevant to the classification problem. Unfortunately, there is no way to know a 
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priori whether a given feature is useful in the discrimination task. The high dimensionality of 

the feature space has been a fundamental problem in pattern recognition since its inception. 

There are several theoretical and computational difficulties that arise from high dimen- 

sional feature spaces. The following three sections briefly discuss these difficulties. 

2.2    Computational Expense 

In the pattern recognition problem, the second phase involves the extraction of fea- 

tures from a given ROI. Each of these features is typically some numerical quantity or metric. 

Some of these could be the coefficients of the Fourier transform or possibly wavelet coeffi- 

cients. In any case, the determination of a feature value involves numerical calculations, 

some of which may be quite complex. If the dimension of the feature space is high, the 

feature extraction process could be very time consuming. 

When a non-parametric classifier such as a neural network is used in the classification 

phase, the training time is significantly affected by the dimensionality of the feature space. 

Typically, this is a one time initial cost and would not be of great concern. However, there 

are pattern recognition problems which require "on-the-fly" retraining [39]. In these in- 

stances, training times become very important and the dimensionality of the feature space 

is a significant factor. 

2.3    Theoretical Limitations 

In addition to the computational considerations, there are theoretical limitations sur- 

rounding the feature space dimensionality. The so called curse of dimensionality [1] states 

that as the number of input features increases, the number of feature vectors must increase 

exponentially for accurate classification. Other works such as Foley [14] give a more prac- 

tical rule-of-thumb. By the Foley criteria, 3n feature vectors should be used for each class. 

In the breast cancer diagnosis problem, we have a two class problem {malignant, benign) 

2-3 



with a 170 dimensional feature space (n = 170). As such, we require 1020 feature vectors 

to meet the Foley criterion. It should be noted that the Foley criterion is actually a lower 

bound [31]. In many pattern recognition problems, acquisition of feature vectors is time 

consuming, costly or simply impractical. In these cases, the number of feature vectors is 

limited and the curse of dimensionality dictates that we must reduce the dimensionality of 

the feature space. In the breast cancer problem, we currently have approximately 70 ROFs 

for which we have truth data (i.e. regions of interest which have been biopsied). Although 

this is a fairly small number, it took several years to build this database. 

2.4 Classification Accuracy 

Finally, there is one additional consideration. It has been shown that the use of in- 

significant features as input into a neural network may reduce classification accuracy [31]. 

In Rogers' paper an example was given using the breast cancer database and 21 orthogonal 

wavelet features. Initially, all 21 features were used to train the network. After employing 

feature saliency techniques, the feature space was reduced to just 7 features. With the fea- 

ture space reduced by two thirds, the network proved to have a higher classification accuracy. 

This result has been seen many times in the literature [29, 3]. 

2.5 Feature Saliency Techniques 

The thrust of this thesis is on the development and comparison of feature saliency 

methods. This chapter presents much of the theory surrounding the most common tech- 

niques used in practice. Not all of the following methods will be analyzed for comparisons 

but they will be explained here because it is important to understand what assumptions sur- 

round the different techniques. The remainder of this chapter is divided into two sections. 

Section 2.5.1 provides the background theory for classical feature selection techniques. Sec- 

tion 2.5.2 presents more recent developments in feature saliency. Each of these sections is 

further divided into two subsections, classifier-free and classifier-based techniques. 
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2.5.1 Classical Techniques. The classical techniques are so named due to their 

longstanding prominence in the field of pattern recognition. The oldest of these dates back 

to 1936 [13]. Most of these require no classifier to perform the technique. 

2.5.1.1 Classifier-Free Feature Saliency. One of the oldest and most funda- 

mental measures used in feature selection is the Fisher Discriminant [13]. For the two class 

discrimination problem, the mathematical relation defining Fisher's Discriminant is 

/ = (2.1) 

Here, \i\ and /z2 represent the mean of a given feature for class 1 and class 2 respectively and 

(Ti and (72 are the standard deviations of the respective classes in the feature dimension. To 

illustrate, suppose we have a two class problem and we wish to evaluate the discriminatory 

effectiveness of two different features. Figure 2.2 shows the sample distributions of feature 

1 for class 1 and class 2. The mean for each class is marked with vertical lines. Notice the 

Class 1 Class 2 

Feature 1 

h 

Figure 2.2    Sample distribution of feature 1 for both classes 

means are well separated but there is significant overlap due to the large variances of the 

distributions. Now consider the sample distributions of feature 2 for each class. These are 

shown in Figure 2.3. Notice here, the means are no longer as far apart but the variances 

are significantly reduced. There is little overlap. It should be intuitively clear that feature 

2 would be better for discriminating between class 1 and class 2. The Fisher Discriminant 
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Class 1 Class 2 

-► Feature 2 

Mi      M2 

Figure 2.3    Sample distribution of feature 2 for both classes 

of equation 2.1 quantifies this intuition. For feature 1, /xi = 1, /X2 = 2 and <Ti = <Ji = .5. 

For feature 2, /xi = 1, ß2 = 1-5 and CTI = o<i = |. The calculated / values are / = 2 and 

/ = 8 for feature 1 and feature 2 respectively. It is important to realize that the Fisher 

Discriminant assumes these marginal distributions are Gaussian. The applicability of this 

measure is questionable for asymmetrical or multi-modal distributions. 

Pattern recognition often involves more than two classes and we resort to a general- 

ized Fisher Discriminant often called the F-ratio. Notice in equation 2.1, the expression is 

roughly the variance of the means over the mean of the variances. The generalized Fisher 

Discriminant or the F-ratio is given by [27] 

variance of the means(over all classes) 

mean of the variances(within-classes) 

Given TV samples for each of m classes, the ratio becomes 

F = 
(m 

TT\2 
*5J£3MPJ-P) 

i(AT-l) Sj=l L,i=l(Xij       ßjV 
(2.2) 

where X{j is the ith. measurement from class j, 

ßj is the mean of all measurements for class j, 
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and fjb is the grand mean. 

It should be emphasized that the Fisher Discriminant or the generalized form evaluate 

a single feature. One possible approach may be to calculate the F-ratio for each feature, 

then select an appropriate number of features to retain from the ranked set. The danger in 

this approach is that the features have been considered in isolation. Interactions have not 

been taken into account. It is highly likely, as in the gender classification example, that some 

features may be correlated. 

Fukunaga develops four additional measures which are further generalizations of the 

F-ratio concept [15]. 

1. Ji = txiS^Sb) 

2. J2 = lnlS-1^! 

3. J3 = trSi, - {J,(trSw - c) 

where tr is the trace; Sw and S& are respectively, the within-class and between-class scatter 

matrices defined and fully explained later in this section. They have the advantage of simul- 

taneously considering a set of features rather than individually. The development of another 

feature saliency technique, the Karhunen-Loeve transformation is a necessary prelude to the 

complete understanding of the generalized F-ratio and will be developed next. 
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Discrete Karhunen-Loeve Transformation. Suppose you are given 

a distribution of exemplars in Rn. Finding the covariance matrix of this distribution will 

most likely reveal off-diagonal elements which are non-zero. As such, these features are 

correlated. Techniques employed to remove this correlation are referred to as diagonalization 

or canonical analysis. The concept of these transformations involves rotation of the feature 

space such that the new feature axes align with the directions of maximum variance. This 

rotation can always be found. An example of this transformation is given next. Consider 

the data in Table 2.1.  The data are plotted in Figure 2.4.   One can immediately see the 

feature 1 feature 2 
3.8 4.6 
3.5 4.3 
3.4 3.7 
3.4 3.5 
3.8 3.3 
4.5 3.6 
4.9 4.2 
5.2 4.1 
5.9 4.9 
6.2 5.4 
6.3 5.9 
5.7 6.2 
4.9 6.0 
4.3 5.7 
3.6 5.0 
4.4 4.1 
5.3 4.8 
6.0 5.7 
5.9 6.2 
4.6 5.5 
4.5 4.9 
5.1 5.5 

Table 2.1    Exemplars 

directions of maximum variance. It is also apparent that a rotation of approximately 45° 

will align the feature axes appropriately. The diagonalization procedure for determining the 

precise rotation is as follows. First, determine the covariance matrix of the exemplars from 

equation 2.3. 
N 

fl = ^\T 

(N 
■^-^(xi-x)(xi-x) 

/     i 

(2.3) 
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Figure 2.4   Data cluster 

where X; is a given feature vector and x is the mean feature vector. % is the index over the 

entire set. Given the data in Table 2.1, the covariance matrix is shown below. 

Q = 
.9011 .5781 

.5781 .8404 

(2.4) 

Notice fl is not diagonal, which is most common. In other words, the feature set is highly 

correlated. We wish to find a transformation A such that Q is diagonalized. In short, we 

seek the matrix A such that 

AT£2A = diag(Ai, A2,..., An) = A 
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It is well known that the transformation A is formed by using the normalized eigenvectors 

of Q as the columns of A [7]. The eigenvectors are computed and the matrix A is 

A = 
-.7254     .6883 

-.6883   -.7254 

The corresponding eigenvalues are found from the transformation 

A = ATJ1A 
1.4497      0 

0        .2919 

Notice A is the transformed covariance matrix Q and is now diagonalized. More importantly, 

the variances in the new transformed space correspond to the eigenvalues of the covariance 

matrix from the original space. Notice the relative magnitudes of the eigenvalues. In this 

particular example, the smallest eigenvalue still accounts for roughly 17 percent of the total 

variance. This indicates that both directions in the rotated space have significant variance. 

Let's assume for a moment that one eigenvalue was significantly larger than the other. What 

does this mean? It tells us only that the direction in the transformed space corresponding 

to the larger eigenvalue contains most of the variance. This does not mean that this direc- 

tion is the most discriminantly informative. In fact, this transformation has nothing to do 

with separability. It may however, allow us to represent the data with fewer features while 

minimizing the representation error. In this sense, we may be able to identify and eliminate 

certain features which have little impact on the representation of the data.  Although the 
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KL transformation yields no information about feature saliency, its simplicity makes it a 

popular method for dimensionality reduction. 

Maximizing Separability. The method of the orthogonal transfor- 

mation as introduced above can be extended to provide information concerning the directions 

of maximum class separability [15]. In the extension, linear transformations, not necessarily 

orthogonal, are applied to combinations of between-class and within-class covariance matri- 

ces. The results are the four criteria found in Pukunaga [15]. Useful explanations of these 

criteria are also found in Parsons [27]. These criteria quantify the saliency of sets of fea- 

tures with respect to separability. The application of these metrics and others is generally 

called discriminant analysis. A qualitative explanation follows. Details can be found in Par- 

sons [27]. 

In order to proceed with the following discussion, it is necessary to define the between- 

class covariance matrix S&, and the within-class covariance matrix S^. As suggested, the 

between-class covariance matrix is the covariance matrix formed from the centroids of the 

individual classes about their grand mean. The within-class covariance matrix is the average 

of the covariance matrices of all classes. Forgetting the definitions for a moment and con- 

sidering what they intuitively represent, we see that the within-class covariance matrix tells 

us how wide the individual classes are on average whereas the between-class matrix gives us 

some indication as to the distance between the classes. Consider the separability measure 

S~1S(). If in a given direction, the ratio is large, we would expect good separability in that 
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direction. The goal is to find the directions of the measure S^Sö which give the largest ra- 

tios. To that end, we simply find the eigenvectors and eigenvalues of S^Sj,. The eigenvector 

corresponding to the largest eigenvalue will be the direction of maximum separability in the 

transformed space. Once again, it should be noted that we've only determined an optimum 

direction in the transformed space which is still a linear combination of the original features. 

Given these eigenvectors, the selection process would involve choosing the features which 

contribute the most to the dominant eigenvectors. This allows us to prune the features and 

is sometimes known as dimensionality reduction. 

2.5.1.2 Classifier-Based Feature Saliency. The previous techniques measured 

the saliency of a feature or set of features without actually using the features in classification. 

It was pointed out that under certain conditions there are severe limitations to these tech- 

niques. One possible approach that could be employed to eliminate these limitations would 

be to consider all possible subsets of features. Measuring the classification performance of 

each subset would then allow one to rank order the best performing subsets of features. 

Obviously this would account for all interactions between features and would produce the 

optimal feature space for the given training set. However, one can see that this exhaustive 

enumeration must consider a prohibitively large number of subsets. For example, suppose we 

have 170 features and we wish to reduce this number to the 10 most salient. This produces 
/ \ 

170 
fa 1015 possible subsets.   For each of these subsets, classification of the data set 

v10 / 
must be accomplished. Obviously, this is not an option unless the original feature space is 
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small and we only wish to eliminate a few features. Sambur [33] and Goldstein [17] proposed 

algorithms which fall into the subset selection category. These algorithms, called the Knock- 

out and Add-on algorithms require a much smaller subset of features to be compared. These 

produce subsets in which all correlations have been taken into account. The algorithms are, 

however, suboptimal since they do not consider all possible subsets. 

2.5.2 Modern Techniques. In recent years, many new methods of analyzing feature 

saliency have been developed. Almost all of these are classifier-based. At least one approach 

can be applied without the use of a classifier [21]. 

2.5.2.1 Classifier-Based Feature Saliency. All but one of the following tech- 

niques specifically require the use of a non-parametric classifier such as a neural network. 

Before proceeding with the discussion of these techniques, it will be beneficial to provide the 

fundamental background information concerning the Multilayer Perceptron (MLP). 

The Multilayer Perceptron consists of interconnected processing units as depicted in 

Figure 2.5. The MLP performs a mapping from Rl —> Rk. In this example, the MLP ac- 

cepts an input vector of dimension i and produces an output vector of dimension k. Each 

interconnection has associated with it a weight. The weights between the input layer and 

the hidden layer are called the input layer weights. Those between the hidden layer and the 

output layer are called the hidden layer weights. Notice that the input layer weights are 

denoted by W}A, where j is the index to the hidden layer nodes and i is the index to the input 

layer nodes.  Similarly, the weights in the hidden layer are denoted by Wjk, where k is the 
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Figure 2.5    MLP architecture 

index to the output layer nodes and j is the index to the hidden layer nodes. The output 

from any input layer node is simply the input. The output for any node in the hidden layer 

is denoted x}- This output is computed from the weighted sum of the inputs to that node as 

shown in the detail of Figure 2.5. The weighted sum of the inputs is termed the activation. 

The function / is called the activation function and is typically one of the following. 

j{a)=a simple linear function 

/(a)=tanh(a) hyperbolic tangent 

/(o)=I+F« sigmoid 

The weights in an MLP are commonly determined through a training process called Back- 

propagation [32, 38]. In the Backpropagation algorithm (see [23] for details), an input is 

applied to the network and the associated output computed. The actual output is then 

compared with the desired output and the weights adjusted in an effort to minimize the 
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error between the desired and actual output. This process, called training, continues until 

all feature vectors in the data set have been processed enough times to reduce the overall 

error below some acceptable criteria. At this point the weights are fixed and the network is 

ready to classify new feature vectors. 

The next three feature saliency techniques stem from the notion that the weights in a 

trained MLP encode all of the important information necessary for accurate classification. 

It is supposed that the relative magnitudes of the weights represent the relative importance 

of the input features [37]. 

Ruck's Saliency. Ruck's Saliency metric is a derivative-based 

technique which measures the sensitivity of an MLP's output to its input [11]. The metric 

is calculated from the partial derivatives of the outputs with respect to the inputs. The 

following equation formalizes this notion. 

p    m    r     k 

dZk,   p      N 

dxiK*mW 
(2.5) 

here, k is the index over all outputs, m is the number of dimensions in the input space, r 

is the number of uniformly spaced points covering the range of each input feature and p is 

the index over all feature vectors in the training set. x^r) is the vector at which the partial 

derivative is evaluated. It is located r units out in the with dimension from the pth data point. 

The absolute value of the partial derivative is used because we are only concerned with the 

magnitude of the change in outputs. The sum over all outputs is necessary to measure the 
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full sensitivity to a change in input. In the computation of the partial derivative dzk/dxi, it 

is clear that there is a dependency on the weights of the MLP. Since the weights established 

after training an MLP depend on their initial values (which are randomly selected) and 

on the order of presentation of the data set, these weights are random variables. For this 

reason, we typically calculate the saliency in equation 2.5 for a number of distinct MLP's 

trained over the same data set but with different initial weights and presentation orders. 

With A" representing the saliency of feature i calculated from the nth MLP, the average 

over N MLP's is given by 

A* = ^ E Ar (2.6) 
•/V n=l 

The subset of salient features can now be obtained from the ranked set of A». 

Tarr's Saliency. Tarr's saliency metric is a weight-based method 

which does not require the calculation of derivatives [37]. Consequently, Tarr's metric is very 

easy to compute as shown in equation 2.7. 

« = EK)2 (2-7) 

where r* is the Tarr saliency metric for feature i, J is the number of hidden nodes and w}j 

is the input layer weight between input node i and hidden node j. There are three variants 

of the Tarr metric. Equation 2.7 is the two norm. Another variant involves the sum of 

the magnitudes of the weights while the third takes the largest weight in magnitude as the 

saliency metric. 
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Signal-to-Noise Ratio. The previous techniques have proven ex- 

tremely useful for determining the saliency ranking of a set of features. Unfortunately, these 

metrics only provide information concerning the saliency of one feature relative to another. 

It is then a matter of subjective opinion to select how many features to retain. To circum- 

vent this problem, recent developments in feature saliency screening have been proposed. 

Belue and Bauer [2] have proposed a method in which a "noise" feature is added to the 

feature vectors of the training set of an MLP. The MLP is trained 10 to 30 times [2] and 

the average saliency for each feature including the "noise" feature is calculated. The "noise" 

feature saliency is presumed to be normally distributed so that an upper (1 - a)% confidence 

interval can be constructed for the average saliency of noise. The other features can then 

be compared directly to the useless noise feature. Those features whose mean saliency lie 

within the confidence interval of the noise feature, are likewise considered noise and can be 

removed from the feature set. This is very advantageous since it provides relative saliency 

information as well as a threshold for determining which features should be removed. In an 

effort to eliminate the need for training an MLP 10 to 30 times, the SNR saliency metric 

was proposed [19, 36]. The ratio can be calculated using any saliency metric but Bauer and 

Sumrell propose using the Tarr metric as shown in equation 2.8. 

1 \2 s^=ioiog(ftS&j (2-8) 

where SNRi is the value of the metric for feature i, J is the number of hidden nodes, wjj 

is the input layer weight from node % to node j and wl
Ni is the input layer weight from the 
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noise input node N to the hidden layer node j. The log transformation of the ratio converts 

the saliency metric to a decibel scale. The SNR screening method is given below [19]. 

1. Introduce a noise feature Xn ~ U(0,1) to the original set of features. 

2. Normalize all features. 

3. Begin training the MLP. 

4. After each epoch, compute the SNR saliency measure for each input feature. 

5. Interrupt training when the SNR saliency measures for all input features have stabi- 
lized. 

6. Compute the classification error. 

7. Identify the feature with the lowest SNR saliency measure and remove it from the set. 

8. Continue training. 

9. Repeat steps 4-7 untill all features (except noise) have been removed. 

10. Plot classification error against features removed. 

11. Retain the first feature whose removal caused a significant increase in error as well as 
all subsequent features. 

This approach has proven very effective in real world problems [20]. 

Decision Boundary Feature Analysis. Decision Boundary Feature 

Analysis (DBFA) [22] is a technique which goes straight to the heart of the classification 

problem. It is a method which conjectures that all of the relevant discriminatory information 

can be found from the decision boundary. This seems intuitively reasonable. By looking 

at the decision boundary for a given classification problem, we can usually identify the 

important discriminant directions. In Figure 2.6 for instance, it should be quite obvious 

that feature 2 plays the dominant role in classifying this data. It is true that feature 1 is 

necessary to correctly classify all data. However, if one were to classify using only feature 2, 

the results would not suffer greatly. After introducing the formulation of the DBFA method, 
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Figure 2.6   Decision boundary with unit normals 

it will be used on the decision boundary of Figure 2.6 to demonstrate how this method finds 

the relative importance of each feature in the discrimination problem. 

The basic premise behind DBFA rests upon the notion of unit normals to the decision 

boundary. Imagine forming unit normals (see Figure 2.6) to an arbitrary decision boundary 

at increments along the boundary. Now suppose the majority of the normals "point" in 

the same general direction. If we find some measure of the covariance of these vectors, we 

should be able to determine the dominant directions of the normals as well as the relative 

magnitudes of the other less important directions. To illustrate such a measure of covariance, 

consider the vectors generated in Figure 2.6. These vectors can be translated to the origin 

and plotted as points. This is shown in Figure 2.7. Notice we simply have a set of vectors 

of which we can easily find the covariance matrix from the covariance relation 

N 

n ^\T 

(N-l) 
]C(*i ~ x)(xi - x) 
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normal vectors relative to the origin 

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 

Figure 2.7   Unit normals relative to origin 

where X{ and x are the normals and their mean respectively.   Calculating this covariance 

yields the following matrix. 

Q 
.0140   0 

0      0 

As before, to find the directions of maximum variance we simply find the eigenvalue and 

eigenvector matrices. For the above covariance matrix we have 

$ = 
1   0 

0   1 

e = 
.014   0 

0      0 
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where $ and e are the eigenvector and eigenvalue matrices respectively. Immediately we see 

that one eigenvalue dominates and that its corresponding eigenvector is nearly horizontal. 

But is this what we wanted? No, we desire the direction of maximum variance to be in the 

direction of the "most common" normal vector. So what is the problem? Notice how the 

covariance was taken. This is the standard covariance relation and it always corrects for 

the mean. In other words, it gives a variance about the mean. Let's suppose we form the 

covariance matrix without correction for the mean. The relation is simply: 

N 
n = ]vExixf (2.9) 

Using this relation, the new (autocorrelation or Effective Decision Boundary Feature Matrix 

EDBFM) and its corresponding eigenvector and eigenvalue matrices are shown below. 

EDBFM 
.0014      0 

0       .1011 

$ = 
1   0 

0   1 

.0014      0 

0       .1011 

Observe the drastic change in the relative magnitudes of the eigenvalues as well as the 

complete shift in the direction of the dominant eigenvector. This eigenvector now indicates 
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the direction of maximum separability. The relative magnitudes of the eigenvalues together 

with their eigenvectors give good insight into the importance of corresponding features to 

classification. To clarify suppose we have a classification problem in R5. Further suppose 

that we have obtained a decision boundary (discriminant function) by some method. We 

then calculate unit normals at locations along the boundary and form the EDBFM using 

equation 2.9. Suppose the eigenvectors and eigenvalues of this correlation matrix are 

$ 

.2941 .4566 .2357 .2063 .6653 

.7352 .1305 .6285 .4126 .0739 

.5882 .6523 .3143 .8251 .4435 

.0735 .0652 .6285 .3094 .5175 

.1470 .5871 .2357 .1031 .2957 

" 

3 0 0 0 0 

0 8 0 0 0 

0 0 2 0 0 

0 0 0 4 0 

0 0 0 0 1 
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if we form a weighted sum as shown below 

»=i 

6.4971 

6.2306 

11.3558 

3.7547 

6.3176 

we see that feature 3 in the original space is the most important while features 1, 2 and 5 are 

roughly equivalent for discrimination. Feature 4 appears to be significantly less important for 

the discrimination of classes. The above heuristic has been used by Eisenbies [8] with good 

results. This thesis proposes an alternative heuristic (see appendix A) which is guaranteed 

to give results identical to those of Ruck's saliency calculated at the decision boundary. 

2.6    Comments 

These feature selection topics have been discussed at a very introductory level. The 

mathematical basis behind these transformations have been omitted but are readily avail- 

able [27, 15, 22]. It may be of interest to see how the features selected using the DBFA 

method compare to those of other saliency metrics such as Ruck's, Tarr's or SNR. They 

should be identical which poses an interesting question. Which ones are easier to calculate? 

Tarr's may be the easiest but it requires a trained network. Although we assumed we were 

using a decision boundary from a trained network when we applied DBFA, this may not be 

2-23 



necessary. Suppose we take as the normals, the line segments connecting two close points 

in two different classes. This should roughly approximate the actual set of normals. This 

concept has been briefly studied with fair results [35]. 

2.7   Conclusion 

As was stated in the introduction, good feature selection may be the most important 

aspect of pattern recognition. The methods mentioned above date as far back as 1936. 

What has been presented here, although not nearly complete, represents the most common 

techniques. Although highly data dependent, it seems at present that DBFA may provide a 

possible measure of determining feature saliency without a trained network. 
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III.   Methodology 

The initial problem encountered in this research stemmed from the very large dimen- 

sionality of the data set and the relatively few feature vectors. Recall from Chapter II 

section 2.3, Foley [14] gives a theoretical limitation to the number of features which can 

be used for accurate classification given a set number of exemplars. Foley's rule is restated 

below. 

3(number of features)(number of classes) < number of exemplars 

The data set of this study contains 170 features, 2 classes and 59 exemplars, a clear violation 

of the Foley criterion. Given the fixed number of exemplars, Foley's rule dictates that the 

feature space be reduced to 10 or fewer features. 

As discussed in Chapter II, there are many techniques designed to determine the most 

salient features from a given feature set. These were discussed in two separate categories, 

classifier-based and classifier-free feature saliency. Due to the gross violation of the Foley 

criterion, initial use of classifier-based saliency metrics was avoided. Instead, a classifier-free 

technique was employed to first reduce the feature space sufficiently to allow a non-parametric 

classifier to be used for further saliency analysis. This initial phase involved a classifier-free 

technique [21] discussed in the following section. 
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3.1    Correlation Analysis Feature Screening 

Correlation Analysis is a very simple procedure for quickly determining which features 

(individually) in a given set are most correlated with class assignment [21]. In the appli- 

cation of this technique, it is hoped that the features which have the highest correlation 

with class will be the most salient. Determining the correlation coefficients for each feature 

is straightforward. Given the data is provided in a (p x n) matrix where p is the number 

of exemplars and n is the number of features, simply attach an additional column which 

contains the classification code. Finding the correlation matrix of this (p x (n+ 1)) matrix 

yields a new ((n + 1) x (n + 1)) matrix. Extracting the first n elements of the (n + l)st 

column gives the correlation coefficients for each feature. 

Alternative approaches for initial screening of the 170 dimensional feature space were 

mentioned in Chapter II Section 2.5.1.1. In section 2.5.1.1, Fisher's discriminant ratio was 

introduced. This is one of the classical techniques used to screen individual features from 

a large feature space. Recall however, that the Fisher ratio results depend heavily on the 

normality of the data within each class for each dimension. In other words, it requires the 

data to be multivariate normal. Unfortunately, the small sample sizes within each class or 

possibly, the true distributions, prohibit the assumption of normality for the data of this 

research. As such, Fisher ratios were not used for initial screening. 

Other generalized forms of the Fisher ratio were introduced in section 2.5.1.1. As 

before, each of these criteria were derived with the assumption of normality. Furthermore, 

these criteria require either the evaluation of a determinant or a matrix inverse. Due to the 
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extremely high correlations between many of the features, the within-class S^ and between- 

class Sb scatter matrices were often found to be singular. These computational difficulties 

prohibited the use of these techniques for initial screening. The above considerations precip- 

itated the use of correlation analysis for initial screening. 

3.2    Cascade-Correlation on the Input Features 

It was mentioned in section 3.1, that many of the features from this database are highly 

correlated. This is a product of the extraction method used for these features. For instance, 

features 1-25 are all Angular Second Moment features. The extraction procedure for each 

is very similar. The result is that these features are highly correlated with each other. In 

fact, features of the same type such as Angular Second Moment, have correlations near 1. 

With this in mind, a procedure was developed which would identify those features which are 

highly correlated with class while having minimal correlation between them. The algorithm 

is straightforward and easy to implement in MatLab. The following pseudo-code illustrates 

the approach. 
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1. Find the feature Xc with the largest correlation with class 

2. Eliminate all features which are correlated with Xc above a user specified threshold Ct 

3. While features remain Return to step 1 

4. End 

At the conclusion of this sequence, a set of features is obtained which have pairwise corre- 

lations below the threshold. The procedure is then repeated with slightly larger thresholds 

until a sufficient number of features have been identified. The features identified at lower 

thresholds are very nearly independent but not necessarily good discriminators. Those ob- 

tained at high thresholds are good discriminators but are likely to be highly correlated. The 

theoretical premise is that the procedure will give a good pool of features in which to apply 

more sophisticated saliency methods. For this research, the cascade correlation procedure 

was used to identify 20 potentially salient features from the initial 170. 

3.3    Classifier-Based Saliency 

Section 2.5.2.1 introduced four classifier-based saliency techniques. This research im- 

plemented three of these as well as two additional techniques to be described below. The 

three previously discussed techniques are found in section 2.5.2.1. 

3.3.1 Ruck Saliency at Data Points. Calculation of Ruck's saliency as proposed 

in section 2.5.2.1, requires the evaluation of partial derivatives at a large number of points 

in the input space.   This number grows rapidly with the dimension of the feature space 
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and as such, has prompted many to seek effective application of Ruck's saliency with fewer 

calculations. One such approach requires the evaluation of Ruck's saliency only where there 

is actual data [34]. This is expressed below. 

V     k 

dzk 

dxi 
(3.1) 

here, k is the index over all outputs and p is the index over all feature vectors in the training 

set. Again the absolute value of the partial derivative is used because we are only concerned 

with the magnitude of the change in outputs. The sum over all outputs is necessary to 

measure the full sensitivity to a change in input. Here, the partial derivatives are evaluated 

only at known data points in the feature space. With A" representing the saliency of feature 

% calculated from the nth MLP, the average over N MLP's is given by 

1   " 
A* = ^ £ A? (3-2) 

ly n=l 

3.3.2 Ruck Saliency at the Decision Boundary. Another variant of Ruck's saliency 

to be introduced in this research involves the decision boundary directly. This method 

involves first finding a set of vectors P which lie on the decision boundary or near the 

decision boundary within a given tolerance. Ruck's saliency is then calculated using this set 

P in equation 3.1. The following pseudo-code illustrates the process. 

1. Train neural network 
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2. Remove all exemplars which are misclassified 

3. For every vector in class 1, find it's nearest neighbor in class 2 

4. Form a line connecting these two points 

5. Find the point p along the line where classification changes 

6. Repeat step 3 for class 2 

The advantage of this method is that it only requires partial derivatives to be computed at 

P points where P is the number of exemplars. This is the same number of evaluations as 

Ruck at the data points, however, the set of points P must first be calculated. In practice, 

this has not been difficult or computationally expensive. Comparisons between performance 

of each of the Ruck variants will be given as part of this research. 

3.4    Summary 

This chapter introduced the correlation-with-class concept as a feature saliency tech- 

nique. In addition, the technique was extended in an effort to acquire pairwise uncorrelated 

features using the cascade algorithm. Two classifier-based techniques, Ruck's at the known 

data and Ruck's at the decision boundary were also introduced. These methods will be used 

in combination in an attempt to optimize the feature set. 
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IV.   Analysis and Results 

4-1    Database 

The database consists of 59 observations for which we have truth data. These fall into 

two classes, malignant (class 1) and benign (class 2). There are 23 observations in class 1 and 

36 observations in class 2. Each observation is a feature vector (1 x 170). The 170 features 

which have been extracted from each ROI fall into the categories as shown in Table 4.1. 

Col Feature 
1-25 Angular Second Moment 

26-49 2nd Order Contrast 
50-74 2nd Order Entropy- 
75-99 Correlation 
100 Average Distance Between Calcifications 
101 Standard Deviation of Gray Levels 
102 Mean of Gray Levels 
103 1st Order Contrast 
104 1st Order Entropy 

105-129 Laws Energy Ratios 
130-135 Power Spectrum Rings 
136-155 Wavelet Coefficients 
156-170 Eigenmass Coefficients 

Table 4.1    Features by type 

4-2   Initial Screening 

The analysis of data began with the initial screening of the 170 features using correla- 

tion analysis. Computation of the correlations is straightforward. The results are shown in 

Figure 4.1. Only the magnitude is of concern, therefore the results shown are the correlation 
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Figure 4.1    Correlations of features with class 

magnitudes. 

In addition to the calculation of correlations, Fisher's ratio was calculated for com- 

parative purposes. The Fisher discriminant ratio and the correlation screening techniques 

provided similar sets of top 20 features. Table 4.2 gives the top twenty (in descending order) 

from each method. 

Correlation Fisher 
123 123 
127 127 
29 29 
34 34 
28 100 
39 28 
33 27 
27 26 
44 39 
38 33 
129 129 
49 102 
26 30 
30 170 
43 44 
32 38 
35 140 
48 136 
45 32 
40 35 

Table 4.2    Top 20 features from initial screening 
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4-3   Initial Classification 

Selecting the top ten features from correlation analysis to use in an MLP classifier 

produced acceptable results. A neural network with 3 hidden layer nodes and two output 

nodes was used. Sigmoid activation functions were used on the hidden layer and output 

nodes. MatLab's accelerated backpropagation (trainbpx) was the training algorithm of 

choice. The overall classification accuracy using the hold-one-out method was 74.6% obtained 

as an average over 10 realizations of the hold-one-out method. Table 4.3 summarizes the 

results. A False - is a malignant exemplar classified as benign while a False + is a benign 

exemplar classified as malignant.    For comparative purposes, the top 10 features from the 

Avg False - Avg False + Avg Accuracy % 
5.2 9.8 74.6 

Table 4.3    Classification results using top 10 correlation features 

Fisher ranking were used in the same network. Although the two sets differed by only two 

features, there was a substantial difference in the error rate. Table 4.4 summarizes the 

results. 
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Avg False - Avg False + Avg Accuracy % 
7.4 13.6 64.4 

Table 4.4   Classification results using top 10 Fisher features 

For comparative purposes 10 features were selected pseudo-randomly. Every 17th 

feature was chosen producing the pseudo-random set of ten. Using the same error estimation 

as before, the following results were produced. 

Avg False - Avg False + Avg Accuracy % 
10.4 16.4 54.57 

Table 4.5    Classification results using ten random features 

4..3.O.I Examination of Correlations. It was noted that most of the top ten 

features from the correlation analysis came from the same type as given in Table 4.1. It 

therefore seemed likely that these ten would be correlated, possibly providing redundant 

information. To check this, the correlation matrix of the features was examined. The 

matrix is very large(170 x 170) and therefore hard to examine. Utilizing the visualization 

capabilities of MatLab, a pseudo-color map for the matrix was generated. This allowed the 

entire matrix to be viewed at a glance and is shown in Figure 4.2. Lighter regions correspond 

to high correlations. 
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Figure 4.2    Correlation matrix 

Immediately one can see that features of the same type are almost perfectly correlated. 

4-3.1 Top 20 Uncorrelated Features. Under the assumption that highly correlated 

features provide redundant information (see appendix E), an effort was made to select features 

which have high correlation with class but small pairwise correlation. To this end, the cascade 

correlation approach as outlined in Chapter III, section 3.2 was applied. The resulting top 20 

features from this procedure are given in Table 4.6. Ct is the correlation threshold sequence. 

4-5 



Feature c< 
34 
169 
113 
157 
100 
131 
158 

.25 

118 .30 
165 
166 .40 
164 
102 
163 

.45 

156 .50 
101 .55 
167 
162 
104 

.60 

123 
2 .65 

Table 4.6    Pool of 20 features using cascade correlation 

4-4    Classifier-Based Feature Saliency 

Reduction of the feature set in Table 4.6 to 10 or fewer features was accomplished 

through the use of the classifier-based saliency techniques as outlined in Chapters II and 

III. Figure 4.3 illustrates the filtering process used to identify the 10 most salient features. 

The neural network architecture consisted of 3 hidden layer nodes, 2 output nodes and 20 

input nodes. Sigmoid activation functions were used on the hidden layer nodes and the 

output nodes. The network was trained 50 times using the entire data set with presentation 

order being randomized. Each of the 5 saliency metrics as well as the confusion matrix 

were calculated for each trained network. The average saliency metrics were then used to 

determine the top 10 features selected by each metric. The process was repeated for each of 

these sets of 10. The top six from each of these were retained. From the five sets of six, the 

frequency of occurrence of each feature in the five sets of six was used to rank the features 
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Figure 4.3    Saliency flow chart 

contained within the five sets. The five sets of six constituted exactly ten features. The ten 

features are shown in Table 4.7 with their frequency of occurrence.  Given these ten features, 

Feature frequency 
163 5 
34 5 
104 4 
165 4 
102 4 
101 3 
123 2 
156 1 
100 1 
131 1 

Table 4.7    Top 10 features by frequency of occurrence 

classification accuracy improved significantly. The results are shown in Table 4.8.  Not only 

Avg False - Avg False + Avg Accuracy % 
3.75 5.75 83.9 

Table 4.8   Classification results using top 10 features from combined techniques 

has the overall classification accuracy improved, but both the probability of a false negative 
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and false positive have decreased. The classification is well balanced as well. Classification 

for both malignant and benign regions is approximately the overall average of 84%. 

4-5    Comparative Analysis of Ruck Variants 

The previous approach proved very fruitful but questions remain as to whether the 

initial screening techniques are necessary. Or the real question may be whether or not one 

could simply violate Foley's rule by training a neural network with all 170 features, then 

using classifier-based saliency techniques, identify a candidate subset of salient features to 

use in more fine tuned reduction. To answer this question, a neural network was trained 30 

times over the entire data set. The network was of the same architecture as in all previous 

analyses only it now has 170 input nodes. The data point and decision boundary variants 

of Ruck's saliency were calculated for each network and averaged over the 30 trials. Ruck's 

saliency using pseudo-sampling was entirely impractical for this problem. To illustrate, with 

59 exemplars, 170 dimensions and a modest sampling interval of 20, 34.1 million partial 

derivatives must be evaluated if pseudo-sampling is to be used. This involves not only 

the calculation of the derivatives, but the evaluation of the neural network at over 200,000 

vectors. Initial runs required over 15 minutes for each network on an ULTRASPARC. This is 

a perfect example of why previous research has proposed that Ruck's saliency be calculated 

only at the data. The results of this approach are provided in Table 4.9. 
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Decision Boundary Data Points 
127 127 
163 163 
100 109 
164 100 
109 164 
123 131 
133 123 
169 133 
157 120 
131 124 

Table 4.9   Top 10 features using two variants of Ruck's saliency 

Again, to test the performance of these two sets, the architecture from previous 

analyses was used. The results for the set obtained from Ruck's saliency at the data points 

are in Table 4.10.   The 10 features obtained from Ruck's saliency at the decision boundary 

Avg False - Avg False + Avg Accuracy % 
9.5 11.17 64.97 

Table 4.10    Classification results using top 10 features from Ruck's at data points 

produced the results in Table 4.11.  The results of each of these methods are inferior to the 

Avg False - Avg False + Avg Accuracy % 
8.17 8.17 72.33 

Table 4.11    Classification results using top 10 features from Ruck's at decision boundary 

results of section 4.4. In fact, these results are worse than the results using the top 10 most 

correlated with class features and the latter didn't require a trained classifier. 

4-6   Summary 

This chapter has demonstrated the viability of correlation analysis as an initial screen- 

ing technique when one is confronted with a high dimensional feature space.  The results 
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of this classifier-free technique were shown to be superior to derivative-based techniques by 

2 percentage points. In addition, classification accuracy was further improved using cor- 

relation analysis followed by classifier-based saliency techniques. This combined technique 

produced classification accuracies 12 percentage points better than the best derivative-based 

technique. Also, comparisons between two variants of Ruck's saliency were presented. It 

was demonstrated that Ruck's saliency calculated at the decision boundary yielded a feature 

set significantly better for classification than the feature set obtained using Ruck's saliency 

calculated at the known data. This was quantified by an increase in classification accuracy 

of nearly 7.5 percentage points. 
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V.   Conclusions 

The goal of this thesis was to advance correlation analysis as proposed by Greene [21], 

and to determine its viability as an effective classifier-free initial screening technique. It has 

been shown for this data set, that correlation analysis is beneficial and possibly the best 

approach. Although these results could be highly data dependent, it is believed that the 

correlation analysis is robust. A summary of the key obstacles and corresponding conclusions 

of this thesis is given below. 

5.1 Violation of Foley's Rule 

The small sample size as well as computational expense dictated the reduction of the 

feature space dimensionality. Classifier based saliency techniques depend on a well trained 

network for accurate results. A network trained in violation of Foley's rule will give a large 

variance in the computed decision boundary and response surface making the use of classifier- 

based saliency as a first cut very suspect. This is the motivation for a classifier-free initial 

screening technique. 

5.2 Fisher's Discriminant Ratio 

One of the most well known and widely used classifier-free saliency techniques is the 

Fisher ratio and its generalized forms. It was previously stated that this metric assumes 

multivariate normality of the data. The data of this research was not multivariate normal. 

In fact, many of the marginal distributions were highly asymmetric. Furthermore, the gener- 
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alized variants require the calculation of matrix inverses or determinants. For this data, the 

scatter matrices were singular due to the high correlations of the features. For comparative 

purposes, the individual Fisher ratios were calculated and the top 10 used for classification. 

It was demonstrated that these features were significantly worse than those obtained from 

correlation analysis. 

5.3 Correlation Analysis 

Correlation analysis is straightforward and computationally inexpensive. In addition, 

it makes no assumptions about the data. One drawback is that it provides only linear 

correlations while eliminating features which may have some useful nonlinear correlation 

with class. Also, it may select features which are highly correlated with themselves, possibly 

providing redundant information. Nevertheless, the results proved significantly better (10 

percentage points) than the results using features obtained from the Fisher ranking. 

5.4 Cascade Correlation Analysis 

To eliminate the retention of correlated features in the retained set, a new "cascade" 

correlation method was developed and implemented. This was combined with classifier- 

based saliency to produce a very salient set of ten features. The results from this combined 

method were significantly better than the results from any other method alone. The highest 

classification accuracy from any stand alone method was 74.6% while the combined method 

produced an average classification accuracy of 83.9%. 
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5.5   Known Data vs. Decision Boundary 

Two variants of derivative-based saliency were employed. Classification results indi- 

cate that derivative-based saliency at the decision boundary is superior to derivative-based 

saliency at the known data. This likely stems from the high variability of the response sur- 

face at locations far from the decision boundary {see appendix D). Although derivative-based 

saliency at the decision boundary requires calculation of the decision boundary, it is compu- 

tationally trivial, and vastly more practical than pseudo-sampling when the dimensionality 

of the feature space is high. 
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Appendix A.   Ruck at the Decision Boundary vs. EDBFA 

EDBFA as introduced by Lee and Landgrebe [22] proposed no procedure for rank 

ordering a feature set. This has remained an open question. Heuristics such as the one in 

chapter II, section 2.5.2.1 have been adopted which produce good results but which may 

not be an optimal use of the information provided by the eigenvector /eigenvalue pairs. This 

thesis proposes that there is a way to combine the eigenvalue/eigenvector pairs which should 

produce identical results with those of Ruck's saliency at the decision boundary. Figure A.l 

illustrates a simple two-class problem in two dimensions.   In this figure, o represents an 

CM 
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-i i_ _J L- 
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feature 1 

Figure A.l    Decision boundary for two dimensional two class problem 

exemplar from class 1 and + is an exemplar from class 2. The *'s are the calculated decision 
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boundary. The • 's are the endpoints of the normal vectors originating at each of the decision 

boundary points. The ray itself is not drawn. Notice, intuitively we would expect each of the 

features to be important for discrimination. The normals at each of the decision boundary 

points are given in Table A.l. Ruck's saliency at the decision boundary is simply the sum 

dz 
dxo 

0.9240 -0.3823 

0.9260 -0.3774 

0.2412 -0.9705 

0.9261 -0.3774 

0.9261 -0.3774 

0.1688 -0.9857 
0.7685 -0.6399 

0.1700 -0.9854 

0.7685 -0.6399 
0.1700 -0.9854 

0.9261 -0.3774 

0.1687 -0.9857 

0.1688 -0.9857 

0.9261 -0.3774 

0.2412 -0.9705 

0.9240 -0.3823 

Table A.l    Normal vectors 

of the absolute magnitudes of each column. Consider the possibility of summing the squares 

rather than the magnitudes. This should give different numerical values but the saliency 

ranking should stay the same. These results are in Table A.2. 

A-2 



£ dz 
dxi £ dz 

dx2 s(fe)2 s(fe)2 

9.3439 10.8002 7.4362 8.5638 

Table A.2    Ruck at the decision boundary 

This indicates that the two features are approximately equal in saliency. To implement 

the EDBFA approach, data from Table A.l is put into a matrix X, and the EDBFM is 

calculated as 

EDBFM = XrX 

which yields 

EDBFM = 
7.4362    -4.7397 

-4.7397    8.5638 

Notice the diagonal entries are just the sums of squares as found in Table A.2. They are 

of course, the variances (non-centered) of the components of the normals. This thesis ques- 

tions whether proceeding with Lee and Landgrebe [22] decision boundary analysis is even 

necessary. Isn't all the information we need contained in these diagonal elements? These 

diagonals provide the same information as Ruck's saliency. The only additional information 

from this matrix is the covariance. But are the covariances important? They do affect the 

eigenvalues and eigenvectors but Lee and Landgrebe [22] never proposed how one should 

interpret these eigenpairs in terms of feature saliency. The fact is, the total variance does 

not change. The eigenvalues are the variances along the eigenvectors. The magnitudes of 

the components of the eigenvectors indicate how much of the variance is in that components 
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dimension. But this information is already summed up in the diagonal elements. This argu- 

ment suggests that DBFA provides no additional information from that already available in 

the Ruck analysis. 

Next, a heuristic will be proposed for ranking features in DBFA. It will be shown that 

this method yields exactly the same results as Ruck's saliency calculated at the decision 

boundary. In section 2.5.2.1, a heuristic was proposed for feature ranking using DBFA. The 

heuristic involved an eigenvalue-weighted sum of the eigenvectors and is reproduced below. 

i 

Suppose the absolute value operator is replaced with the "squared" operator (-)2 such that 

every element of the vector (j> is squared. This is shown below and has been proposed by 

Stewart [35]. 

* = I>(&)2 (A.i) 
i 

This method will guarantee the same results as given in Table A.2. To prove this, one 

only has to look at the spectral decomposition of the matrix EDBFM. The decomposition 

is formed from the eigenvalue-weighted sum of the outer products of the eigenvectors [7]. 

Each of the outer products forms a matrix with diagonal elements equal to the squares 

of the elements of the generating eigenvector. The resulting sum of these matrices will of 

course yield EDBFM. Therefore, if one were to square the elements of each eigenvector 

prior to forming the weighted sum, the results would be precisely the diagonals of EDBFM 
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(see appendix B). But these diagonals are exactly the sums of squares found in Table A.2. 

Furthermore, these sums of squares have the same ranking as the sums of absolute values as 

originally proposed by Ruck. This guarantees the equivalence of Ruck's saliency calculated 

at the decision boundary and DBFA saliency using the heuristic in equation A.l. 
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Appendix B.   Spectral Decomposition 

Proof 1. 

Suppose Ruck's saliency has been calculated at n points along the decision boundary. Each 

of these n gradients can be normalized and placed in a matrix X such that each row is 

a normal vector and each column is the components partial derivative. From this matrix, 

Ruck's saliency is calculated from the sums of the absolute values of each column. For 

notational simplicity, take the two-dimensional case as shown below. 

dz dz 
dx\ ÖX2 

( \ 
Oll &12 

x = 

O'nl     Ün2 

Ruck's saliency is then, 

A       sr\dz \ *-?£' (B.l) 
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or, 

tf = 
Ai 

A2 

The ranking of the components of \I> is the Ruck ranking of features. 

Suppose the sums of the squares of the columns had been used rather than the sums 

of the absolute values. The Ruck saliency of each feature is now, 

* = *£>' 
dz 

* = U-SZ-) 
N dxo 

(B.2) 

The EDBFM as proposed by Lee and Landgrede [22] is defined to be the outer product 

of the matrix X. Calling this matrix EDBFM gives the following relation, 

EDBFM = XrX = 
A   B 

B   D 

which is symmetric.  Note also that the diagonal elements A and D of EDBFM are the 

sums of squares of the columns of X so that, 

EDBFM = 
A   B Ai   B 

B   D B   A2 
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and, 

AT A 
* = = 

_A2_ D 
(B.3) 

The spectral decomposition of a symmetric matrix guarantees that the matrix EDBFM 

can be decomposed into a linear combination of the outer products of it's orthonormal eigen- 

vectors [7]. If vi and v2 are the orthonormal eigenvectors of EDBFM and Ai and A2 are the 

corresponding eigenvalues, the matrix EDBFM can be decomposed as shown, 

EDBFM = 
A   B 

B   D 

= Ai'Ui'üf + \2Vivl 

Now, if Vi and v2 are written in component form, 

vi = 

(     \ 
a 

v"J 
v2 = 

(     \ 
7 

\1/ 

and the spectral decomposition expanded, 

EDBFM = 
A   B 

B   D 

= MvivJ + A2u2f^ = Ai 
a2   aß 

+ A2 

72   7<5 

ßa   ß2 67   62 

so that, 

A = Aia2 + A272 
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D = Ai/?2 + A2<52 

or, 

A 

D 

(   ,\ 

Ai 
a 

+ A2 

Ai(t;i)2 + A2(t;2)
2 

( A r 

and so by equations B.3 and B.4, 

* = 
Ai 

A2 
i 

(B.4) 

(B.5) 

This demonstrates the equivalency of the Lee and Landgrebe [22] approach using the metric 

of equation B.5 and the Ruck saliency as proposed in equation B.2. All that remains to be 

shown is that the Ruck ranking of features using the absolute value as in equation B.l does 

not change if the ranking is calculated using the sums of squares as in equation B.2. This 

proof [24] is provided in appendix C. 
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Appendix C.   Ranking Equivalency 

Proof 2: 

Given a matrix of elements x, such that \x\ < 1, 

a   c 

b   d 

constrained by the normalization relations, 

a2 + c2 = l bz+d' = l (C.l) 

show that, 

2   ,   L2 -^ „2   ,   J2 if   \a\ + \b\ > \c\ + \d\    then   a* + bl > cl + d (C.2) 

Begin by incorporating the constraint relations in equations C.l into the matrix. 

a   y/l — a2 

b yr^F 
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Now rewrite the hypothesis C.2, 

if   H + l&l^x/T^ + vT1^   then   a2 + fe2>2_a2_ft2 (C3) 

Assume C.3 is not true such that, 

a2 + b2<2-a2-b2 (C.4) 

then 

a2 + b2<l (C.5) 

er. y 

Now since \a\ + |&| > 0    and    y/l - a2 + y/l - b2 > 0,     then     x2 > y2, and the following 

inequality can be written, 

a2 + \ab\ + b2   >   l-a2 + l-b2 + J(l-a2){l-b2) (C.6) 

a2 + |aft| + 62   >   2-a2-b2 + Vl-a2-b2 + a2b2 (C.7) 

2(a2 + b2) + \ab\ >2 + y/l - a2 - b2 + a2b2 (C.8) 

now by C.5, it is true that, 

2(a2 + b2) < 2 (C.9) 
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combining equations C.8 and C.9 gives the relation, 

\ab\ > y/l-iat + ^ + aW (CIO) 

again by condition C.5, it must be true that, 

yj\ - (a2 + b2) + a?b2 > VM? (C.ll) 

Combining relations CIO and C.ll gives the following false relation, 

\ab\ > vW (C.12) 

This implies that relation C.5 cannot hold, which proves that inequality C.4 is false when 

the left side of inequality C.3 is true. Therefore the hypothesis C.2 is proved. It is a simple 

matter to show this proof holds if columns are added to the matrix. It can also be shown by 

induction that the proof will hold if rows are added. 
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Appendix D.   Ruck at the Decision Boundary vs. Ruck at Known Data 

The results of this thesis are insufficient to claim that Ruck's saliency at the decision 

boundary will always outperform Ruck's saliency at the known data. However, it does suggest 

that it will likely outperform the known data variant if the network is poorly trained, while 

giving equivalent results otherwise. An example of such possibilities is given next. 

Figure D.l shows a two dimensional two-class problem with the accompanying decision 

boundary. The problem is linearly separable and should only require a single hidden layer 

node. To illustrate the implications of improper architecture or improper training, a network 
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Figure D.l    Two dimensional two-class problem 

with 7 hidden layer nodes was used. This produces more variation in the resulting response 
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surface since the network attempts to use all of its nodes.   Figure D.2 demonstrates this 

"noisy" surface.   The original data is shown on the lower plane while the zero plane cuts 

feature 2 
feature 1 

Figure D.2    Neural network response surface 

the surface at the decision boundary. Notice (by inspection) that the partials taken at 

the data points have significant magnitudes in both dimensions. At the decision boundary 

however, there is much less variation. The significant component of the gradients is much 

less ambiguous. To quantify these conclusions, the saliency for each method was computed 

for this problem. The results are given in Table D.I. Although the two methods properly 

Method feature 1 feature 2 Ratio 
DB 
DP 

39.8922 
3.3610 

6.7481 
1.7255 

5.9116 
1.9478 

Table D.l    Ruck saliency values 

identify the most salient feature, Ruck's at the data points is much less certain about which 
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is better. In a two dimensional problem, it is unlikely that it would rank these erroneously 

but in a 170 dimensional problem, it is highly likely that the ranking will differ. This is in 

fact what was seen for the data used in this thesis. 

To demonstrate the convergence of the two techniques when the neural network is 

properly trained, another example is given. In this example, the Ruck saliency using pseudo- 

sampling is calculated as well. Figure D.3 illustrates the two dimensional two-class problem. 

Again, the problem is clearly linearly separable. Proper architecture requires only one hidden 

2- 

1 ° 

-2-10123 
feature 1 

Figure D.3    Two class pattern distributions 

layer node. Additional nodes provide too many degrees of freedom. The neural network 

output using 7 nodes and 1 node respectively is shown in Figures D.4 and D.5. The saliency 

results are given in Tables D.2 and D.3. 
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feature 2 

Figure D.4   Poorly trained network Figure D.5   Properly trained network 

Method feature 1 feature 2 Ratio 
DB 
DP 
PS 

68.3818 
3.5258 

385.4236 

5.3170 
1.5659 

99.7109 

12.8610 
2.2516 
3.8654 

Method feature 1 feature 2 Ratio 
DB 
DP 
PS 

84.5169 
3.9458 

399.9759 

3.1065 
.1450 

14.7018 

27.2065 
27.2124 
27.2059 

Table D.2    Ruck   saliency   with   poorly 
trained network 

Table D.3    Ruck saliency with properly 
trained network 
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The ratios indicate that the saliency metrics converge when the network is properly 

trained. It is again evident that Ruck's saliency calculated at the decision boundary suggests 

a far greater importance of feature 1, relative to feature 2, than Ruck's saliency using the 

other variants. In other words, Ruck's saliency at the decision boundary when the network 

is improperly trained, gives a ratio more consistent with that obtained from the saliency 

ratios of a properly trained network. 
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Appendix E.   Should Cascade Correlation Work? 

One of the fundamental premises behind the cascade correlation concept is that features 

which are highly correlated with each other provide redundant information, allowing one to 

be discarded. Figure E.l illustrates a two dimensional two-class problem in which the features 

are highly correlated but both are necessary for accurate classification. Feature 1 and feature 

2- 

1.5- 

1 - 

0.5 

<N 
<D 

3      0 
2 

-0.5 h 

-1.5- 

-1.5 -0.5 0 
feature 1 

0.5 1.5 

Figure E.l    Highly correlated features 

2 have correlations with class of .2606 and -.4309 respectively. The correlation between them 

is .7248. In this case, cascade correlation may select feature 2 because of its high correlation 

with class, then discard feature 1 because it is highly correlated with feature 2. This would 

cause a severe reduction in classification accuracy. Whether or not the procedure will discard 
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feature 1 depends entirely on the sequence of values Ct used in the procedure. These values 

are chosen arbitrarily however. It seems entirely possible that a better use of correlation 

information can be found and exploited. 
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